Practical Adoption of Open Source System Verilog Tools

CHIPS Alliance Fall Workshop, 2021-10-12
Michael Gielda, mgielda@antmicro.com
Enabling Faster Innovation

- Scalable Hybrid Computation
- Broadening the Outreach
- Bridging Existing Methodologies
- Breaking Down Complexity
- Enabling Collaboration
Enabling Faster Innovation

- Scalable Hybrid Computation
- Broadening the Outreach
- Bridging Existing Methodologies
- Breaking Down Complexity
- Enabling Collaboration

Practical Adoption of Open Source System Verilog Tools

CHIPS ALLIANCE

antmicro
WHY DO WE NEED SYSTEMVERILOG SUPPORT IN OPEN SOURCE TOOLS?

- Proprietary licensing of existing tools makes it hard to build scalable, reproducible CIs
 - Especially publicly accessible CIs in multi-org projects - OpenTitan, CHIPS Alliance
- Number of open source cores and lots of pre-existing IP implemented in SystemVerilog, e.g.
 - SweRV
 - Ibex
 - BlackParrot
 - Core-V
- Open source tools will help building a collaborative ecosystem around ASIC and FPGA design
HOW TO BUILD AN OPEN SOURCE SYSTEMVERILOG ECOSYSTEM

- Identify missing functionalities and features
- Reuse existing solutions
 - There are many existing projects which can be improved
- Create well documented and transparent projects
 - Include automated tests and status reporting in projects
- Cooperate with others
 - Gather information on what is needed
- Provide incremental value
CHIPS ALLIANCE & HDLS

- CHIPS wants to encourage all sorts of open source ASIC development - and acknowledges that the future ecosystem will be pluralistic
- workgroups for both Chisel and SystemVerilog peacefully coexist and collaborate within our Technical Steering Committee
SO, WHAT DO WE MEAN BY PRACTICAL ADOPTION?
LAY OF THE LAND: SV-TESTS

- Test suite to determine the SystemVerilog support level in various open source tools
- Pinpoint all the supported/missing SV features
- Report: symbiflow.github.io/sv-tests
- Three types of tests:
 - SystemVerilog features
 - Existing third party test suites
 - Selected open source IP cores (SweRV, Ibex etc.)
REUSE: SURELOG / UHDM

- How to provide good SV support across the board?
- **Surelog**: open source SystemVerilog 2017 Pre-processor, Parser, Elaborator and UHDM Compiler
- Universal Hardware Data Model ([UHDM](#)) is used to exchange the information about elaborated SV design between the parser and other tools
- Integrating UHDM into Verilator and Yosys
- Can [parse, synthesize and simulate OpenTitan’s Ibex core](#) directly from source - https://github.com/chipsalliance/UHDM-integration-tests
UHDM/SURELOG + VERILATOR/YOSYS

SystemVerilog design → Surelog → Design expressed in UHDM → Yosys
Another parser? → libuhdm

Another tool? → libuhdm
INCREMENTAL VALUE: VERIBLE

- Open source SV linter/formatter
- Released by Google on [GitHub](https://github.com), onboarded into CHIPS
- Actively developed by Google and Antmicro
- Used e.g. in Ibex (OpenTitan) CI
- Very versatile, with lots of practical uses

Files
```

```
// Copyright 2018 ETH Zurich and University of Bologna, see also CREDITS.md.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.

ifdef RISCV_FORMAL
 define RVTI
endif
#include "prim_assert.sv"

/**
 * Top level module of the ibex RISC-V core
 */

module ibex_core #(
 parameter bit PMEEnable = 1'b0,
 parameter int unsigned PMPGranularity = 0,
 parameter int unsigned PMPNumRegions = 4,
 parameter int unsigned MHPCounterNum = 0,
 parameter int unsigned MHPCounterWidth = 40,
 parameter bit RV32S = 1'b0,
 parameter ibex_pkg1:RV32m_o RV32M = ibex_pkg1:RV32NFast,
)
```
VERIBLE - LINTING

- Linter — a static code analysis tool to spot and fix stylistic errors and bugs in SystemVerilog code
- Allows enforcement of rules on a project or company level in various SystemVerilog projects to follow authoritative style guides
- The rules vary from simple ones to more sophisticated and are highly configurable
- E.g. making sure the module name matches the file name, checking variable naming conventions

$ verible-verilog-lint --ruleset all core.sv
core.sv:3:11: Interface names must use lower_snake_case naming convention and end with _if. [Style: interface-conventions] [interface-name-style]
VERIBLE - FORMATTING

• Formatter — a complementary tool for the linter used to automatically detect various formatting issues like improper indentation or alignment
• As opposed to the linter, it only detects and fixes issues that have no lexical impact on the source code
• Linter + formatter can effectively remove all the discussions about styling, preferences and conventions from all pull requests
• Developers can then focus solely on the technical aspects of the proposed changes

```verilog
$ cat sample.sv
typedef struct {
 bit first;
 bit second;
 bit third
 ;
 bit fourth;
 bit fifth; bit sixth;
} foo_t;

$ verible-verilog-format sample.sv
typedef struct {
 bit first;
 bit second;
 bit third;
 bit fourth;
 bit fifth;
 bit sixth;
} foo_t;
```
VERIBLE GITHUB ACTIONS

Development

Pull request

Manual review

Automatic review with Verible

ACK

GitHub Actions

Merge
VERIBLE LINTER GITHUB ACTION

- [chipsalliance/verible-linter-action](https://github.com/chipsalliance/verible-linter-action)
- Any GitHub-hosted open-source or private project can inform commiters about the issues detected in their code
- Wide range of applications can be devised, from faster pull requests reviews, to isolating erroneous portions of code
- Blog note
VERIBLE FORMATTER GITHUB ACTION

- [chipsalliance/verible-formatter-action](https://github.com/chipsalliance/verible-formatter-action)
- Same as above, except it automatically generates code suggestions which can just be accepted - instant benefit!
USING KYTHE FOR GENERATING INDEXED CODE DATABASE

- Verible can be used to perform many other tasks, e.g. generating a Kythe compatible indexing database
- Indexing an SV project simplifies collaboration - navigate through the source code using a web browser
- Showcase GitHub repository
- Example index webpage

```
// Copyright lowRISC corp.
// Copyright 2018 ETH Zurich
// Licensed under the Apache License, Version 2.0
// SPDX-License-Identifier: Apache-2.0

ifndef RISCV_FORMAL
 define RVFI
endif

#include "prim_assert.sv"

/**
 * Top level module of ibex
 */

module ibex_core (
 parameter bit
 parameter int unsigned
 parameter int unsigned
 parameter int unsigned
 parameter int unsigned
 parameter bit
 parameter ibex_pkg:
```
COOPERATE WITH OTHERS: ADOPTION

• Our main focus in ongoing development was the OpenTitan project
• Currently pushing wider adoption at Google and other OT partners
• Now also used by some of the Core-V users, such as QuickLogic
• Starting collaboration with ZeroASIC
• Also working with the wider Ibex, BlackParrot, Core-V and SWeRV communities
REUSE / COLLABORATE:
UVM IN OPEN SOURCE

- Lots of pre-existing IP and test benches implemented in SystemVerilog
- Lots of developers familiar with UVM
- Open source UVM is necessary long term to combine commercial ecosystem with open source tools and methodologies
- Chip-making companies can benefit from open source while keeping their existing UVM codebase
- Open source tools will enable infinitely scalable, reproducible CIs
OPEN SOURCE UVM

• Ongoing work on extending Verilator with SystemVerilog features required by UVM:
  ▫ Stratified scheduler
  ▫ Randomize methods
  ▫ Class support
• One of already reached milestones is development of dynamic scheduling in Verilator
Antmicro helps customers scale up ASIC development between teams and companies and into the cloud.

All the tools described here are meant to be used in a cloud context, on GitHub as well as private enterprise installations.

Mix and match open and closed components.

Use custom, powerful runners with scalable compute and custom peripherals e.g. FPGA boards for testing.

Read more on our blog.
CUSTOM RUNNERS IN ACTION(S) WITH GITHUB

- Used for testing the UHDM integrations
- Gives us ability to do longer runs with more compute resources
- We can generate additional statistics of execution metrics, decrease resource usage and provide more insight
- Easier to find bottlenecks
CUSTOM RUNNERS IN ACTION - DISTANT-BES

- Run private builds, but potentially share (sanitized) build logs/results
- Upload results to own servers
- Store them for as long as needed
- Create more customized dashboards and detailed views of "what went wrong"
SUMMARY

- CHIPS Alliance is building an open source SystemVerilog tooling ecosystem - join us!
- **Practical use cases are possible already now, both in local and collaborative / cloud development**
- More features and use cases are actively being worked on
- We want to hear about your needs and projects!
- Join our mailing lists:
  [sv-wg@lists.chipsalliance.org](mailto:sv-wg@lists.chipsalliance.org)
WANT TO USE OPEN SOURCE SYSTEMVERILOG TOOLS?

reach out to us:

contact@antmicro.com